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Abstract

Recent research [Parkhurst, D., Law, K., & Niebur, E., 2002. Modeling the role of salience in the allocation of overt visual atten-

tion. Vision Research 42 (1) (2002) 107–123] showed that a model of bottom-up visual attention can account in part for the spatial

locations fixated by humans while free-viewing complex natural and artificial scenes. That study used a definition of salience based

on local detectors with coarse global surround inhibition. Here, we use a similar framework to investigate the roles of several types

of non-linear interactions known to exist in visual cortex, and of eccentricity-dependent processing. For each of these, we added a

component to the salience model, including richer interactions among orientation-tuned units, both at spatial short range (for clutter

reduction) and long range (for contour facilitation), and a detailed model of eccentricity-dependent changes in visual processing.

Subjects free-viewed naturalistic and artificial images while their eye movements were recorded, and the resulting fixation locations

were compared with the models� predicted salience maps. We found that the proposed interactions indeed play a significant role in

the spatiotemporal deployment of attention in natural scenes; about half of the observed inter-subject variance can be explained by

these different models. This suggests that attentional guidance does not depend solely on local visual features, but must also include

the effects of interactions among features. As models of these interactions become more accurate in predicting behaviorally-relevant

salient locations, they become useful to a range of applications in computer vision and human-machine interface design.

� 2005 Published by Elsevier Ltd.
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1. Introduction

Selective attention is the ubiquitous mechanism that

regulates the bottleneck between the massively-parallel
world of sensation and the serial world of cognition

(James, 1890). This is particularly true in the visual sys-

tem of primates, where 50% of the primary visual cortex

is devoted to processing input from the central 2% (10�)
of the visual field (Wandell, 1995). In order to benefit

from this non-uniform allocation of processing resourc-
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es, the visual system relies on a combination of covert

and overt attentional shifting mechanisms to efficiently

bring behaviorally relevant stimuli under the processing

capabilities of central vision (Treue, 2003).
We used eye movements as an overt measure of where

observers were directing their covert attention. This

method is based on the pre-motor theory of attention

(Rizzolatti, Riggio, Dascola, & Umilta, 1987), which

suggests eye movements and attention shifts are driven

by the same internal mechanisms. Links between eye

movements and attention have been demonstrated by

behavioral (Hafed & Clark, 2002; Hoffman & Subr-
amaniam, 1995; Kowler, Anderson, Dosher, & Blaser,

1995; Sheliga, Riggio, & Rizzolatti, 1994, 1995) as well

as physiological (Kustov & Robinson, 1996; Moore &

Fallah, 2001, 2004; Moore, Armstrong, & Fallah, 2003)
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and brain imaging (Nobre, Gitelman, Dias, & Mesulam,

2000; Beauchamp, Petit, Ellmore, Ingeholm, & Haxby,

2001) studies. A number of studies have taken informa-

tion-theoretical or statistical approaches to eye

movements, asking how fixated regions differ from

non-fixated regions (Krieger, Rentschler, Hauske, Schill,
& Zetzsche, 2000; Privitera & Stark, 2000; Reinagel &

Zador, 1999). These studies have shown that fixated re-

gions have high contrast and high variance (low correla-

tion) (Reinagel & Zador, 1999), distinctive higher-order

statistics (Krieger et al., 2000), and high local symmetry

(Privitera & Stark, 2000). Yet while such results help

characterize expected fixation locations, they do not

explicitly include a mechanism by which biological vision
might extract the relevant features from the input.

In the present study we use biologically plausible

quantitative models to test hypotheses regarding the

links between brain and behavior. Each model variant

operates in the basic framework of a model of bottom-

up saliency-driven attention (Itti & Koch, 2001; Itti,

Koch, & Niebur, 1998)—which we refer to here as the

baseline salience model. This model comprises a number
of parallel channels for processing different feature

types, such as luminance, orientation, and color, and

the outputs from each of the channels are combined to

produce a single, feature-independent salience map. This

salience map signals salient, i.e., conspicuous or interest-

ing, locations in the visual scene. It has been shown that

such salience maps can predict locations likely to be

fixated by human observers with significantly better-
than-chance accuracy (Parkhurst, Law, & Niebur,

2002). Despite these results, covert and overt attentional

fixation locations may sometimes be distinct (Posner &

Cohen, 1984); nevertheless it is likely that overt and cov-

ert shifts of attention are closely related except in the

presence of considerable effort to meet explicit instruc-

tions to the contrary (e.g., ‘‘don�t look at the stimulus,

but keep on fixating’’).
We asked whether, and to what extent, human fixa-

tion behavior is influenced by three putative physiolog-

ical mechanisms. First, we considered short-range

interactions among orientation-tuned units found in ear-

ly visual cortical areas with retinotopically-overlapping

receptive fields. This effect, known as cross-orientation

suppression (Deangelis, Robson, Ohzawa, & Freeman,

1992; Morrone, Burr, & Maffei, 1982), has traditionally
been assumed to arise from local lateral connections

within cortex (Crook, Kisvarday, & Eysel, 1997; Dean-

gelis et al., 1992; Worgotter & Koch, 1991; Somers, Nel-

son, & Sur, 1995), although it has also been proposed

that thalamocortical inhibition could produce a func-

tionally similar result (Carandini, Heeger, & Senn,

2002; Freeman, Durand, Kiper, & Carandini, 2002).

Regardless of the specific neuronal implementation,
such divisive inhibition leads to contrast-enhancement

and a sharpening of orientation tuning—similar to a
center-surround operation, but operating in the orienta-

tion and frequency domains rather than in the spatial

domain. Furthermore, divisive inhibition provides the

gain control needed to work within the limited dynamic

range of neurons (Heeger, 1992). A number of computa-

tional models for cross-orientation suppression have
been proposed (Kolesnik & Barlit, 2003; Lauritzen,

Krukowski, & Miller, 2001); in particular, one of these

(Lee, Itti, Koch, & Braun, 1999) was shown to succinctly

account for detection and discrimination thresholds in a

range of psychophysical tasks involving isolated Gabor-

like grating stimuli on a blank background. In the pres-

ent study, we adapted this model to test the extent to

which such local interactions may actually influence
scanpaths over natural scenes.

Second, we considered long-range interactions

among orientation-tuned units with non-overlapping

receptive fields, which are thought to contribute to the

visual system�s exquisite sensitivity to contours. The

presence of such lateral interactions has been inferred

from neuroanatomy and electrophysiology (Blasdel,

1992; Das & Gilbert, 1999; Pettet & Gilbert, 1992; Stet-
tler, Das, Bennett, & Gilbert, 2002) and from psycho-

physical studies demonstrating increased or decreased

contrast detection thresholds at a central location

depending on the presence and orientation of surround

elements (Polat & Sagi, 1993, 1994a; Zenger & Sagi,

1996; Zenger, Braun, & Koch, 2000). An appropriate

arrangement of connection strengths (Braun, 1999a; Po-

lat & Sagi, 1994b; Li, 1998; Li & Gilbert, 2002), involv-
ing facilitation between nearly collinear edge segments

and inhibition between non-collinear parallel and

orthogonal segments, has the effect of enhancing the

activity of units that respond to the segments comprising

an elongated contour such as the Gabor ‘‘snakes’’ de-

scribed in Section 2.2. A number of such models exist

(e.g. Braun, 1999a; Li, 1998; Tang, Medioni, & Lee,

2001); here, we adapted the model of Mundhenk and Itti
(2002) to test whether contour-facilitation plays a signif-

icant role in determining fixation locations in complex

images, and furthermore how that role depends on the

relevance of contours to the behavioral task.

Third and last, we considered the cumulative effects

of eccentricity-dependent processing through the early

stages of vision. Anatomically, these effects begin in

the retina with a strongly peaked distribution of cone
photoreceptors and retinal ganglion cells near the fovea,

along with correspondingly smaller receptive field sizes,

and continue with a further expansion of foveal repre-

sentation in primary visual cortex. One psychophysical

manifestation is the influence of eccentricity on the rela-

tionship between contrast detection thresholds and spa-

tial frequency; a similar relation exists for orientation

discrimination thresholds (Virsu & Rovamo, 1979).
There are essentially two effects when moving from the

fovea to the periphery: discrimination thresholds
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become generally higher (reflecting overall poorer visual

sensitivity), and the optimal spatial frequency becomes

lower (reflecting larger receptive fields). Parkhurst

et al. (2002) found that observers� fixation locations fol-

lowed a non-uniform spatial distribution favoring the

center of stimulus images, while the baseline salience
model predicted a uniform distribution of fixation loca-

tions. We designed a simple but efficient model of eccen-

tricity-dependent effects in which the salience model�s
intermediate feature maps are attenuated according to

spatial frequency and eccentricity, in a manner quantita-

tively consistent with previously published contrast-de-

tection and orientation-discrimination thresholds

(Virsu & Rovamo, 1979). Using the distribution of fixa-
tion locations generated by observers, we compared the

detailed model of eccentricity-dependent effects with

simpler approximations (such as used by Parkhurst

et al., 2002).

In each of these three cases, we find that the physio-

logical mechanisms have a significant influence on the

selection of fixation locations, at least to the extent that

our coarse models capture the essence of these mecha-
nisms. Importantly, we find this effect in tasks involving

free viewing of crowded naturalistic scenes, including

grayscale outdoor scenes (van Hateren & van der

Schaaf, 1998), grayscale satellite imagery, and full-color

fractals. Our aim was to cover a range of natural image

types with a small number of categories. Although top-

down factors based on emotional reaction or explicit

memory can certainly play a significant role in determin-
ing fixation locations (Yarbus, 1967), we deliberately

avoided images that would strongly trigger such factors

(such as close-up images of faces, familiar people, or

well-known locations) since we assume them to be partly

outside the scope of the bottom-up physiological mech-

anisms under consideration. With that constraint, we

selected outdoor scenes with elements whose general

types would be familiar (trees, grassy fields, streets and
sidewalks, campus buildings) but whose particular iden-

tities would be unknown to most observers. We also

selected overhead satellite imagery, involving scenes that

are still interpretable (roads, mountains, fields are easily

identifiable), but which, in contrast to outdoor scenes,

are visually unfamiliar to most observers, due to the

unusual overhead and wide-angle perspective. Fractal

images contain spatial frequency spectra similar to nat-
ural images, but contain no familiar elements. Finally

we used a set of images containing random arrange-

ments of Gabor patches; these served to specifically

highlight the role of non-local interactions.

The success of these models helps to support a quan-

titative link between observers� unconstrained overt

behavior and the detailed functional properties of indi-

vidual neurons as inferred from single-unit recordings
and psychophysics experiments with constrained stimuli

and task conditions. This detailed computational model
of bottom-up, salience-based attention is useful for a

range of applications from neuroscience to engineering.

Machine vision systems face the same difficulties as do

biological vision systems, and so a quantitative imple-

mentation of attentional selection can lead to similar

improvements for machine vision systems. Indeed, mod-
els of bottom-up attention have been shown to improve

the performance of traditional computer vision object

recognition systems, both in the visual learning phase

as well as in the subsequent recognition phase (Miau

& Itti, 2001; Walther, Itti, Riesenhuber, Poggio, &

Koch, 2002; Rutishauser, Walther, Koch, & Perona,

2004). Accurate models of behavior also serve a very

practical goal in human-machine interface: particularly
for visual attention, there are many attention-demand-

ing contexts (e.g., driving, flying, surveillance, image

analysis) in which even a trained expert could occasion-

ally benefit from an assistant system that was trained to

match the expert�s optimal behavior. None of this denies

the crucial roles of top-down, task-dependent attention

in conscious vision (James, 1890; Koch, 2004), yet in

the absence of detailed quantitative models, we have
concentrated here on the contribution of bottom-up,

salience-driven cues to fixation.
2. Methods

2.1. Subjects

Psychophysics subjects (ages 18–25) from the Caltech

community participated as paid volunteers as follows.

Four of these (‘‘group A’’) participated in the first set

of free-viewing experiments involving outdoor photos,

overhead satellite imagery, and fractals. Another four

(‘‘group B’’) participated in a second free-viewing exper-

iment involving Gabor snakes and Gabor arrays. Final-

ly, seven subjects (‘‘group C’’) participated in a third
experiment involving a comparison between the free-

viewing and contour-detection tasks. Three of the sub-

jects participated in more than one experiment, so the

total number of individuals involved was 12. Tables 2

and 4 give results from groups A (columns 1–3) and B

(columns 4–5), while Table 3 gives results from group

C. Informed consent was obtained from all subjects,

and experimental procedures were approved by the Cal-
ifornia Institute of Technology�s Committee for the Pro-

tection of Human Subjects.

2.2. Stimuli

We used four classes of images (Fig. 1), ranging in

size from 1000 · 1000 to 1536 · 1024 pixels, subtending

a visual angle of roughly 15.8� · 15.8� to 16.2� · 25�.
The experiments reported here typically included about

100 images from each image class: grayscale 10-meter



Fig. 1. Samples from each of the image databases used in psychophysics and modeling experiments. All of the databases contained only grayscale

images, except for the fractals which contained exclusively full-color images. The four exemplar images in the left column (one from each category)

are used in subsequent figures to illustrate the output of each model component. (a) Overhead satellite imagery. The inset provides a zoomed view of

the boxed region. (b) Outdoor photographs. (c) Computer-generated fractals. (d) Gabor ‘‘snakes’’ and Gabor arrays—arrays of randomly spaced

and oriented Gabor elements, some containing ‘‘snakes,’’ or chains of elements aligned so as to form a strong percept of a contour. The inset shows

the boxed area at higher resolution. Although the ‘‘snakes’’ are not highly visible at the scale shown here, these contours are strongly salient when

viewed at the scale used in our psychophysics experiments. See Section 2.2 for details.
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resolution ‘‘digital orthorectified’’ (DOI10m) overhead

satellite imagery;1 grayscale outdoor photographs2 (van

Hateren & van der Schaaf, 1998); color fractals generat-

ed with gnofract4d software3 and from the Spanky Frac-

tal Database;4 grayscale Gabor ‘‘snakes’’ and Gabor

arrays containing arrays of randomly spaced and orient-
ed Gabor elements generated with a previously-de-

scribed algorithm (Braun, 1999a, 1999b). The Gabor

‘‘snake’’ images included chains of Gabor elements that

were properly aligned so as to induce a strong percept of
1 From the National Geospatial-Intelligence Agency (NGA)
(http://geoengine.nga.mil/).
2
http://hlab.phys.rug.nl/imlib/.

3
http://gnofract4d.sourceforge.net/.

4
http://spanky.triumf.ca/.
a contour, even though element spacing and Gabor

phase were otherwise random.

2.3. Free-viewing task

Images were presented to subjects in a free-viewing
task (Fig. 2a). Each trial began with a 1000 ms fixation

cross at the center of a blank screen, which subjects were

instructed to fixate. This imposed some consistency on

the initial conditions of the subsequent scanpaths, across

different images and observers. Following the fixation

cross, a target image was shown for 3000 ms. Subjects

were instructed to ‘‘look around the image’’ with no

restrictions except the knowledge that they would have
to provide a response, as follows. Immediately after

the target image disappeared, a single line was presented

http://geoengine.nga.mil/
http://hlab.phys.rug.nl/imlib/
http://gnofract4d.sourceforge.net/
http://spanky.triumf.ca/


Fig. 2. The two tasks performed by subjects while their eye movements were recorded. In the free-viewing task (a), each trial began with a fixation

cross (1000 ms), followed by a stimulus image (3000 ms) drawn from one of the image categories shown in Fig. 1. Subjects were asked to freely inspect

the image. After the image disappeared, subjects were presented with a single line bisecting the screen into two regions, and were asked to make a

two-alternative forced choice (2-AFC) as to whether they thought ‘‘the most interesting point or area’’ in the just-seen image fell in region 1 or region

2. The orientation of the line varied randomly from trial to trial; since subjects could not predict the orientation, they were forced to consider the

entire stimulus image, without being encouraged to focus on any particular aspect of the image. In the contour-detection task (b), each trial began

with a fixation cross followed by a stimulus image as before. However, when the image disappeared it was replaced by a full-screen uniform white

mask. This was followed by a new response screen containing a single schematic contour, and subjects made a 2-AFC as to whether there had been a

matching contour at the same location in the just-seen image. On 50% of trials, there was in fact such a match, while on the other 50% of trials, a non-

matching contour was selected from among the contours that matched other images in the same category.
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at an arbitrary orientation bisecting the screen into two

regions of equal size. The two regions were labeled as

‘‘1’’ and ‘‘2,’’ and subjects were required to make a but-

ton press indicating which region contained the location
that they had found ‘‘most interesting’’ in the previous

image. Our motivations for requiring this response were

twofold: (1) to encourage subjects to be vigilant in their

task and engage in active eye movements (without a

minimal task to motivate them, subjects might ‘‘effi-

ciently’’ choose to make no eye movements at all); and

(2) to avoid imposing any particular top-down bias on

the task (such as would occur if subjects were asked to
search for horizontal lines, or to judge the brightness

of the image, or to name objects in the image), allowing

direct comparisons with a model of bottom-up atten-

tion. Although no time limit was imposed on the

responses, subjects were encouraged prior to the experi-

ment not to dwell on the choice for too long, but rather

to make their best guess if they felt unsure.

2.4. Contour-detection task

We used a second task to investigate the influence of

contours on fixation locations (Fig. 2b). The overall for-

mat of the task was similar to the free-viewing task, ex-

cept (1) the image presentation time was shortened from

3000 ms to 2500 ms, (2) a full-screen uniform white

mask was presented for 500 ms immediately after each
image to prevent subjects from relying on retinal after-

images to perform the task, and (3) a different response

was required, as explained next. After the image and the

mask, subjects were presented with a single schematic
line-drawn contour, and responded with a key press to

indicate whether that contour matched a contour that

was present at the same location in the image they had

just seen. On half of the trials, the contour was in fact

a match to the preceding image, and on the other half,

the contour was a non-match (selected from a pool of

contours that matched other images in the experiment).

The schematic contours were Bezier curves that closely
approximated the shapes of hand-picked salient con-

tours in the target images.

2.5. Eye tracking

Subjects were seated 75 cm from a CRT used for

stimulus display, which subtended 26� · 19� of visual

angle, and used a chinrest to minimize eye-tracking er-
rors due to head movements. We used an infrared (IR)

eye tracking system (ISCAN, Inc.) to sample and record

subjects� eye position at 120 Hz. An illuminator and

camera were placed �65 cm from the subject, and his

or her right eye was illuminated with a beam of low-in-

tensity (�1 mW/cm2) invisible IR light (�850 nm). The

camera recorded a close-up image of the eye, which

was processed in real-time to extract the positions of



2402 R.J. Peters et al. / Vision Research 45 (2005) 2397–2416
two features: (1) p, the IR-dark spot at the center of the

pupil, and (2) c, the IR-bright spot where the IR beam

produces a specularity on the cornea. The vector differ-

ence v 0 = p � c of these two positions gives a measure of

eye position that is independent of head position. An

empirical correspondence between v 0 (in camera coordi-
nates) and the subject�s real-world point-of-regard v (in

stimulus display coordinates) was established by a set

of calibration trials in which the subject fixated a series

of crosses shown at 25 different locations on an invisible

5 · 5 grid in the stimulus display. These v–v 0 pairings
could then be used to interpolate the subject�s point-

of-regard throughout the remainder of the session.

Following each session, each lasting about 12 min, we
re-recorded subjects� eye positions at the 25 calibration

locations in order to assess how much drift had occurred

during the recording session. Across all eye-tracking ses-

sions, the overall error was 0.54� ± 0.44� (mean ± s.d.)

degrees of visual angle per calibration point.5

2.6. Salience model

All of the models described here6 are based on the

computational architecture of a salience model of bot-

tom-up visual attention first proposed by Koch and Ull-

man (1985) and developed in detail by Itti et al. (1998)

(see Fig. 3). Each input image is processed in parallel

through a number of feature channels (e.g., one each

for color, luminance, orientation), and the outputs of

these channels are ultimately combined to form a single
salience map. This map ascribes a scalar value to each

point in the input image, indicating how salient or ‘‘in-

teresting’’ that location is, regardless of which features

contributed to the salience.

The individual channels share a common architec-

ture. In general, the input image is first passed through

a series of linear filters at nine spatial scales to form a

dyadic pyramid. These filter outputs are then subject
to spatial competition via a center-surround operation,

implemented as a difference between fine and coarse

scales in the pyramid. Typically there are six feature

maps generated by this center-surround operation, using

center scales c 2 {2,3,4} and surround scales at

s = c + d, with d 2 {3,4}. The feature maps are summed

across scales and passed through a non-linear normali-

zation operation designed to reduce or eliminate numer-
ous weak local maxima in favor of a small number of
5 Although observers� wearing of contact lenses or eyeglasses has
been reported to lead to lower eye-tracking accuracy, we found no
difference in the drift error between observers with corrected (n = 6)
and uncorrected (n = 9) vision within our subject pool.
6 Source code for the iLab Neuromorphic Vision Toolkit (iNVT),

including the salience model and each of the extensions described
below, is freely available under the GNU General Public License
(GPL) at http://ilab.usc.edu/toolkit/.
stronger near-global maxima. This produces a single

conspicuity map representing the output of the channel;

these conspicuity maps are eventually summed across

channels and renormalized to produce the final salience

map.

The standard channels for static images include a
luminance channel that responds to luminance contrast,

an orientation channel (including filter outputs from

multiple scales and orientations) that responds to orien-

tation contrast, and a color channel that responds to

opponent-color contrast. These reflect many of the fun-

damental computational operations thought to be per-

formed in the early stages of the visual system (Marr,

1982; Wandell, 1995). Nevertheless, the modular archi-
tecture of the salience model allows other new channels

to be included in parallel to the standard channels, or

even to replace one or more of them. This is the ap-

proach we used in testing more detailed models of inter-

actions among orientation-tuned units, as described

next.

2.7. Short-range orientation interactions

We adapted a model of interactions among overlap-

ping orientation-tuned units (Itti, Koch, & Braun,

2000; Lee et al., 1999) (see Fig. 4) that could be substi-

tuted for the standard orientation channel in the salience

model. In this enhanced orientation channel, orienta-

tion-sensitive units tuned to overlapping spatial loca-

tions, but to different orientations h and spatial
frequencies x, form an inhibitory pool. In the two-stage

model, the feedforward first-stage response Eh,x is sub-

ject to self-excitation and suppression from the inhibito-

ry pool. The result of these interactions is the non-linear

second-stage response Rh,x, given by

Rh;x ¼ ðEh;xÞc

Sd þ
P
h0 ;x0

W hh0 ;xx0 ðEh0 ;x0 Þd

with d, c: power-law exponents; S: semi-saturation con-

stant; W hh0 ;xx0 ¼ e
�ðh�h0 Þ2

2R2
h e

�ðx�x0 Þ2

2R2x ; Rh, Rx: widths of inhibi-

tory pool. It should be noted that in the original model,

the feedforward responses Eh,x were calculated using

ideal filters tuned for a given h and x:

Eh;x ¼ Acse
�ðhs�hÞ2

2r2
h e

�ðxs�xÞ2

2r2x þ B

with cs: stimulus contrast; hs: stimulus orientation; xs:

stimulus spatial frequency; rh: sharpness of orientation
tuning; rx: sharpness of spatial frequency tuning; A:

contrast gain; B: background activity level.

In contrast, for the modified version that was incor-
porated into the salience model, Eh,x is given by the val-

ues already computed in the dyadic orientation-tuned

pyramids. Lee et al. (1999) performed an extensive series

of psychophysical experiments including detection and

http://ilab.usc.edu/toolkit/


Fig. 3. Schematic diagram of the salience model (top) and salience maps (bottom row) corresponding to the four exemplar images in the left column

of Fig. 1. In the salience model, an input image is processed in parallel through multiple channels. In each channel (here for luminance, orientation,

and color), the image is filtered at nine spatial scales, and the resulting feature maps pass through a center-surround operation to accentuate contrast

(e.g., the map at scale 7 is subtracted from the map at scale 4). The center-surround maps are combined across spatial scales leading to one

conspicuity map per channel; finally these conspicuity maps are combined across features to produce a single feature-independent salience map.

Additional channels may be included in parallel to the three channels shown here; in our experiments, we tested a modified orientation channel that

included short-range orientation interactions (Fig. 4), a contour-facilitation channel based on long-range orientation interactions (Fig. 5), and a

model of eccentricity-dependent effects in which the luminance and orientation feature maps were attenuated as a function of eccentricity and spatial

scale (Table 1).
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discrimination tasks for contrast, spatial-frequency and

orientation, and used the results to calibrate the interac-

tions in this model; we used these same calibrated values

in our version of the model.

2.8. Long-range orientation interactions

We adapted a model of long-range orientation inter-

actions from Mundhenk and Itti (2002) and Braun

(1999a) (Fig. 5) that was included as a new channel in
the salience model. Briefly, this model relies on a set of

weight matrices that determine how one orientation-

tuned unit is influenced by other such units at different

distances and orientations (Fig. 6), in a manner reflect-
ing the long-range axonal connections thought to be

present in primary visual cortex (Blasdel, 1992). These

matrices are sometimes described by their shape which

resembles a ‘‘butterfly’’ or ‘‘bow-tie,’’ with wedges of

excitatory connections leading from the central unit to

other units that are similarly tuned and nearly collinear.



Fig. 4. At top is a schematic diagram of the short-range orientation interactions model (figure adapted from Lee et al., 1999). In this model, an input

image is passed through a set of linear filters tuned to different orientations and spatial frequencies. The linear outputs feedforward into a second

stage, in which the set of filter outputs corresponding to a given spatial location form a pool that divisively inhibits each unit�s response at that

location. As a result of this recurrent processing, the second stage output exhibits gain control and contrast enhancement relative to the first stage.

We tested a modified version of the salience model from Fig. 3 in which the standard orientation channel is replaced by one including short-range

orientation interactions; the bottom row of images here shows the salience maps produced by such a modified model for the four exemplar images

from the left column of Fig. 1.

7 Although interactions between color vision and eccentricity are
widely reported (Anstis, 2002; Hibino, 1992; Imhoff, Volbrecht, &
Nerger, 2004; Lu, Lesmes, & Sperling, 1999; Mullen & Losada, 1999),
we did not include a model of such interactions in our study. This was
partly because the complex interactions between hue perception,
isoluminance, ambient illumination, and eccentricity do not map well
onto the rough model of color processing contained in the baseline
salience model�s color channel, and partly because we found that a
simple approximation to eccentricity effects, applied to the salience
map as a whole, could already account well for observers� fixation
locations.
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Outside these wedge-shaped regions, there are inhibitory

connections from the central unit leading to other simi-

larly tuned units that are nearly parallel but not collin-

ear. Our model did not include interactions among
orthogonal or nearly orthogonal units. A formal math-

ematical description is given in Appendix A.1.

2.9. Eccentricity-dependent filtering

It has been reported that saccade targets tend to clus-

ter around the current fixation location, rather than

being uniformly distributed throughout the visual scene.
That is, nearby targets are preferred over faraway ones.

Although this effect has been fitted empirically with a

Gaussian-decaying mask applied to the final salience

map (Parkhurst et al., 2002), we asked whether a de-

tailed model of eccentricity-dependent orientation-dis-

crimination and contrast-detection thresholds would

explain the behavior as well or better. We developed a

model based on previously published psychophysical
thresholds (Virsu & Rovamo, 1979) representing orien-

tation discriminability and contrast detectability each

as functions of both eccentricity and spatial frequency.

These formed a convenient match to the internal struc-

ture of the orientation and luminance channels, each
of which contains a set of feature maps for different spa-

tial frequencies (see Fig. 3).7 To apply the psychophysi-

cal thresholds to these internal feature maps, the value

of each unit was attenuated according to two factors:
(1) x, its eccentricity relative to the current fixation loca-

tion, and (2) x, the spatial frequency to which it re-

sponds. The attenuation coefficient m is given by

m ¼ cxe�kxx, where cx and kx are empirically-deter-

mined parameters depending on the spatial frequency

x; values for cx and kx are given in Table 1. This atten-

uation process is computationally efficient, since the

attenuation values can be precomputed and stored as
one ‘‘mask’’ for each spatial frequency; applying the

masks when an input image is received requires just



Fig. 5. At top is a schematic diagram of the long-range orientation interactions (contour-facilitation) model. A formal description is given in

Appendix A.1. In this model, an input image is passed through a series of filters tuned to 12 orientations (only 4 are depicted in this figure), all tuned

to the same spatial scale. The output from these first-stage filters feeds into second-stage activation maps via a set of kernels that specify connection

strengths as a function of relative spatial position and relative orientation tuning (see Fig. 6). These connections are arranged so as to selectively

enhance locations that form part of an elongated contour. The activation maps are summed across orientations and passed through a sigmoid non-

linearity to yield the final output map. The model output evolves iteratively (three iterations were used in the present study); the second-stage maps

recurrently excite their first-stage counterparts, and the output map recurrently modulates the strength of inhibition within the connection kernels to

limit the dynamic range of the output. In practice, the model was instantiated at three spatial scales, but there were no interactions between scales at

the intermediate stages; the outputs from each of the spatial scales were summed at the final stage to produce an overall output. The bottom row of

images shows the salience maps produced by a modified salience model including a separate contour-facilitation channel in addition to the standard

orientation channel (Fig. 3), for the four exemplar images from the left column of Fig. 1.
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one array shift and multiplication per spatial frequency,

rather than a convolution or Fourier transform. Once

the attenuation masks were applied to the internal fea-

ture maps in the luminance and orientation channels,

the remainder of the salience algorithm proceeded as

usual.

We also tested several approximations to this full

model of eccentricity-dependent filtering, in which only
the final salience map was multiplied by a spatial mask.

These masks decayed with eccentricity x either as ce�kx

or ce�kx2 , with varying values of the constants k and c.

Finally, in all of the eccentricity-dependent filtering

computations, the model�s ‘‘fixation location’’ (used as

the center of the various spatial masks) was always

yoked to the observer�s actual fixation location. Thus,

the eccentricity-dependent filtering models were run
once for each observer against which they were to be

compared. This reflects that our models do not specify

a mechanism for generating sequences of eye move-

ments, but instead merely identify likely locations for

an upcoming fixation, given the current fixation location.
2.10. Normalized scanpath salience (NSS)

Our analyses rest on the degree of correspondence be-

tween human fixation locations and model salience

maps, taking into account the high inter-subject vari-

ability of eye movements. The most straightforward ap-

proach was as follows (Fig. 7). Each salience map was

linearly normalized to have zero mean and unit standard
deviation. Next, the normalized salience values were

extracted from each point corresponding to the fixation

locations along a subject�s scanpath, and the mean of

these values, or normalized scanpath salience (NSS),

was taken as a measure of the correspondence between

the salience map and scanpath. Due to the pre-normal-

ization of the salience map, normalized scanpath sal-

ience values greater than zero suggest a greater
correspondence than would be expected by chance be-

tween fixation locations and the salient points predicted

by the model; a value of zero indicates no such

correspondence, while values less than zero indicate an

anti-correspondence between fixation locations and



Fig. 6. Illustration of the weight matrices that connect neighboring units at different orientations in the contour model of Fig. 5. See Appendix A.1

for details. (a) Each grid entry is a spatial array depicting the connection strengths between a central unit (unit 1) tuned to the orientation given by the

column label, and a neighboring unit (unit 2) tuned to the orientation given by the row label. Within each grid entry, the spatial separation between

unit 1 and unit 2 is represented by the x- and y-axes, and connection strength is represented by gray level: lighter pixels reflect regions of excitation,

darker pixels reflect regions of inhibition, and gray pixels reflect the absence of any connection. The ‘‘butterfly’’ shape of the kernels reflects the

symmetric cones of excitation connecting a central unit with neighbors whose position and orientation is such that the two units are ‘‘nearly

collinear,’’ as well as the symmetric flanks of inhibition between units representing contour elements that are nearly parallel but non-collinear. (b) An

enlargement of the 90�/90� kernel. Here, connection strength is represented by z-axis height as well as gray level, with values above and below 0.0

representing excitation and inhibition, respectively. (c) The orientation-independent component q is a function of the distance between the receptive

field centers of units 1 and 2. (d) The orientation-dependent component w is a function of the angular difference between the mean orientation (a) of
units 1 and 2 and the orientation (/) of the line segment connecting the two units. The connection kernels are formed by the sum of an inhibitory

component that depends only on distance (via q), and an excitatory component that depends on both distance (q) and orientation (w).

Table 1

Values used to construct the spatial-frequency-dependent masks for the eccentricity-dependent filtering model

Spatial frequency Luminance channel Orientation channel

(x, cycles per degree) cx kx cx kx

16.0 60.01 0.40 44.97 0.36
9.0 180.00 0.35 130.08 0.26
4.5 210.61 0.17 210.64 0.15
2.3 236.45 0.13 286.12 0.12
1.0 190.71 0.10 186.79 0.09
0.7 166.29 0.09 162.38 0.08
0.4 130.40 0.13 87.92 0.06

For each unit in the internal feature maps of the luminance and orientation channels, its response value was attenuated by a factor m ¼ cxe�kxx, a

function of the retinal eccentricity x (degrees of visual angle) and the spatial frequency x (cycles per degree), where cx (unit-less) and kx (degrees�1)

are frequency-dependent constants fitted to empirical data from Virsu and Rovamo (1979). In this way, at each spatial location, the maximum

possible salience was decreased by an factor that grew larger with increasing distance from the current center of fixation.
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Fig. 7. Illustration of the method used to compare fixation locations obtained from eye tracking with salience maps obtained from various

computational models. (a) A sample image is shown to both the human observer and the model. (b) The model generates a salience map (grayscale

image), which is normalized to have zero-mean and unit standard deviation (see scalebar). A series of fixation locations is generated by the observer

(connected dots), and the normalized salience value is extracted for each location (values are shown here next to the corresponding fixation

locations). (c) The average normalized salience value across all fixation locations is taken as the normalized scanpath salience (NSS), and compared

against the distribution of salience values across the entire salience map (gray histogram). For the scanpath shown here, the normalized scanpath

salience indicates that, on average, the model-predicted salience at fixated locations was 1.304 standard deviations above chance level. Since the NSS

is scale-free, it can be used to compare the degree of correspondence between observed and predicted behavior for different observers and images.

R.J. Peters et al. / Vision Research 45 (2005) 2397–2416 2407
model-predicted salient points. Another benefit of the

pre-normalization is that these measures could be com-

pared across different subjects, image classes, and model
variants; with such a data pool, statistical tests indicated

whether the distribution of NSS values was different

from the zero-mean distribution expected by chance.

This approach is similar to the one taken by Park-

hurst et al. (2002) in that both rely on a linear transfor-

mation of salience values; however, our approach uses a

variable dynamic range based on the variance of the sal-

ience values, while the alternate approach uses a fixed
dynamic range based on the difference between the min-

imum and maximum values (which were rescaled to 0

and 100, respectively, in Parkhurst et al., 2002). In addi-

tion, our approach compares salience values at fixated

locations to chance distributions unique to each image;

the alternate approach compares salience values to a sin-

gle chance distribution based on all images in a given

image category. Our method was intended to accommo-
date the wide variety of salience distributions observed

for different input images (for example, consider how a

salience map with 100 points, 90 with value 1.0 and 10

with value 0.0, would be handled relative to a second

salience map with 100 values spaced evenly between

0.0 and 1.0).
8 We obtained nearly identical results (NSS values close to 0) with
another pseudo-model whose salience maps were obtained by a
random spatial scrambling of the values in the actual salience map.
3. Results

A summary of all of the comparisons between models

and human behavior in the free-viewing task is given in

Tables 2 and 4. Each number gives the average NSS

across all observers and images in that image class. In

general, our data agree with previous results (Parkhurst

et al., 2002) showing that the baseline salience model
was significantly above chance (p < 10�23) at predicting
locations likely to be fixated by observers in a free-view-

ing task. As expected, this result was largely independent

of image category for naturalistic images such as over-
head imagery, outdoor photos, and fractals, but did

not hold for more artificial images such as the Gabor ar-

rays, for which the baseline salience model was virtually

at chance in predicting fixation locations. Indeed, we

chose to use the Gabor arrays for exactly this reason:

nothing in the baseline model can ‘‘see’’ the contours,

yet they are perceptually salient to human observers.

We used two pseudo-models as controls to estimate
the theoretical minimum and maximum NSS values that

could be expected of the salience models. First, the the-

oretical range of NSS values is bounded from below by

the behavior of a random model, in which the ‘‘salience

maps’’ simply contain noise drawn from a normal distri-

bution.8 The very nature of our analysis method re-

quires that this random model should produce NSS

values of 0, and indeed we found values that were nearly
0 (BSM in Table 2; slight differences from 0 are due to

the finite size of our data set).

Second, the theoretical range of NSS values is bound-

ed from above by the behavior of an inter-observer

model in which the ‘‘salience maps’’ are generated by

the pooled fixation locations from all observers. For

this, we constructed a spatial array containing a delta

function peak at each fixation location from all observ-
ers, and blurred this array by convolving with a two-di-

mensional Gaussian, with half-width at half-height of

�1� (see Fig. 8). The blurring was intended to allow

for variability in different observers� fixation locations

for the same target, and for spatial uncertainty from



Table 2

Results of comparing each model with scanpaths recorded during the free-viewing task (Fig. 2a)

Outdoor Fractal Satellite Gabor snake Gabor array

NSS, mean ± s.e.m.

Random model �0.01 ± 0.01 �0.02 ± 0.01 0.02 ± 0.01 �0.01 ± 0.01 0.02 ± 0.02
Baseline salience model (BSM) 0.69 ± 0.03 0.44 ± 0.03 0.62 ± 0.03 0.10 ± 0.03 0.14 ± 0.02
BSM + Short-range interactions (SRI) 0.75* ± 0.03 0.56* ± 0.03 0.71* ± 0.03 0.11 ± 0.02 0.14 ± 0.02
BSM + Contour-facilitation (CF) 0.72 ± 0.03 0.60* ± 0.03 0.81* ± 0.03 0.41* ± 0.03 0.52* ± 0.02
BSM + SRI + CF 0.74 ± 0.03 0.66* ± 0.03 0.85* ± 0.03 0.40* ± 0.03 0.50* ± 0.02
Inter-observer 1.30* ± 0.04 1.13* ± 0.04 1.10* ± 0.04 1.15* ± 0.06 0.91* ± 0.05

NSS, % of Inter-observer NSS

Random model �0% �2% 2% �1% 2%
Baseline salience model (BSM) 53% 39% 57% 9% 15%
BSM + Short-range interactions (SRI) 57% 50% 65% 10% 15%
BSM + Contour-facilitation (CF) 55% 53% 74% 36% 58%
BSM + SRI + CF 57% 59% 77% 35% 55%
Inter-observer 100% 100% 100% 100% 100%

Each number represents the average normalized scanpath salience (NSS) value, for a given model, across all of the fixation locations recorded while

observers freely viewed images for 3000 ms each. The normalized scanpath salience values were obtained by the method illustrated in Fig. 7, in which

salience maps were first normalized to have zero mean and unit standard deviation, and then for each scanpath the average normalized salience was

computed for the fixation locations along the scanpath. Thus for the data shown here, a value of zero would indicate the absence of a correspondence

between model predictions and observed fixation locations; a value of one would indicate that, on average, the model-predicted salience was one

standard deviation above chance at each fixation location for all observers and all images in the given image category. The upper rows show these

correspondences for salience maps predicted by (1) a random ‘‘model’’, (2) the baseline salience model (BSM; see Fig. 3), (3) a modified model

including short-range orientation interactions (BSM + SRI; see Fig. 4), (4) a second modified model including contour-facilitation (BSM + CF; see

Fig. 5), (5) a combined model including both short-range interactions and contour facilitation (BSM + SRI + CF), and (6) the control condition in

which the ‘‘salience map’’ is derived from all observers� scanpaths. This last condition quantifies how well the pooled fixation locations from all

observers predict the specific fixation locations of individual observers; as such, it provides a theoretical upper limit for the performance of the

models, since the models are not designed to account for inter-observer variability. Thus, the lower rows express the performance of each model as a

percentage of the corresponding upper limit. Numbers with a * indicate models whose fit was significantly better than the corresponding baseline

salience model (p < 0.05, paired t-test).
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the eye tracking method. In practice, this process was

slightly modified so that when predicting the fixation
locations of observer A, the inter-observer model was

based on data from all observers except A (i.e., a

‘‘leave-one-out’’ analysis). We found that this inter-ob-

server model gave NSS values between 0.9 and 1.3,

depending on the image type (Table 2).

One way to describe the performance of the salience

model is to consider its performance as a percentage

of the difference between the NSS scores of the random
and inter-observer models. These values are shown in

the bottom half of Table 2, and range from 39% to

57% for the natural image classes and from 9% to 15%

for the Gabor arrays. Fig. 9 gives a graphical depiction

of these results.

Although the primary goal of the forced-choice task

(‘‘which of two regions was more interesting’’) in the

free-viewing experiment was to encourage observers to
actively inspect the image without placing any particular

top-down bias on their eye movements, observers�
responses to this task also offer an opportunity to com-

pare an implicit measure of salience (i.e., observers� fix-
ation locations) with an explicit measure (i.e., their

responses to the forced-choice task). Note that although

during the free-viewing experiment (Fig. 2a) observers

did not know the orientation with which the response
screen would be bisected until after they had viewed

the image, we can retrospectively divide observers� eye
movements, as well as the models� salience maps,

according to this bisecting line for the purpose of subse-

quent analysis. We found no significant difference be-

tween the amount of time observers spent viewing the

subsequently selected (mean ± s.e.m.: 1.42 ± 0.02 s) and

unselected (1.40 ± 0.02 s) regions. There was also no sig-

nificant difference between the average normalized sal-

ience in the subsequently selected (0 ± 0.006) and
unselected (0 ± 0.006) regions. However, there was a sig-

nificant tendency (p < 0.05, paired t-test) for the portion

of the observers� scanpath inside the selected region to

have a higher NSS (0.52 ± 0.02) than the portion that

fell inside the unselected region (0.47 ± 0.02). That is,

observers tended to view more salient locations within

the subsequently-selected region than in the unselected

region, even though they spent equal amounts of time
viewing both regions, and both regions had the same

average salience.

3.1. Short-range orientation interactions

When the model of short-range orientation interac-

tions was substituted for the standard orientation chan-

nel in the salience model, we observed a statistically



Fig. 8. Illustration of the inter-observer model, a control used to establish an upper bound on how well a model of bottom-up attention could be

expected to predict observers� eye movements. For each input image (left), observers� scanpaths were recorded (center left column); each point in the

scanpath represents a single sample from the 120 Hz eye-tracking trace. From each scanpath, a heatmap was constructed (center right) by placing a

Gaussian ‘‘blob’’ (half-width at half-height �1�) at the location of each sample from the eye movement trace. These blobs were summed across

observers to produce a map (right) whose values represent how often observers were fixating in the vicinity of each location. As before, the bottom

row of images corresponds to the four exemplar images from the left column of Fig. 1.
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significant 10–20% improvement (p < 0.05, paired t-test)

in the NSS scores across all of the image classes, except
for the Gabor snake and Gabor array images in which

there was no effect of the short-range orientation inter-

actions. Average NSS values, as percentages of the in-

ter-observer NSS values, ranged from 50% to 65% for

the natural image classes, and from 10% to 15% for

the Gabor arrays (BSM + SRI in Table 2).

3.2. Long-range orientation interactions

We added to the salience model a new channel for

contour facilitation via long-range orientation interac-

tions (BSM + CF in Table 2). This led to improved

NSS scores over the baseline salience model by 19–

36% for the three image classes, and by �300% for the

Gabor arrays. Notably, only with long-range orienta-
tion interactions did the model�s performance rise above

chance levels for the Gabor arrays. In addition, for all
image classes except the outdoor photos, the baseline

model with contour facilitation had significantly higher

NSS scores than did the baseline model with short-range

orientation interactions. We also tested a model that

included both short-range and long-range orientation

interactions (BSM + SRI + CF in Table 2). This com-

bined model bettered the individual models in just those

cases where the individual models each led to a statisti-
cally significant improvement over the baseline model.

Finally, turning again to the theoretical upper limit on

model performance attained by the NSS attained by

the inter-observer model, we found that the modified

salience model including a contour-facilitation channel

reached 36–74% of this maximum across the different

image classes (Table 2).
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NSS) between observers� fixation locations and the various models, as a percentage of the theoretical maximum NSS given by the inter-observer

model.
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We used a second experiment to specifically address
the role of elongated contours in selecting fixation loca-

tions, by asking subjects to view the same images under

two different task conditions: first, the standard free-

viewing task, and subsequently, a contour-detection

task. Table 3 shows the results of comparing models

with behavior in these two tasks. The baseline model

performance was worse in predicting fixation locations

in the contour-detection task than in the free-viewing
task; this is likely because performing the contour-detec-

tion task involves a greater top-down component,

whereas the model mimics only bottom-up components.

Nevertheless, there was an interaction between task and
Table 3

Results of comparing each model with eye-tracking data from the two differ

Outdoor Satellit

fv cd fv

NSS, mean

Baseline salience model (BSM) 0.45 0.51 0.43
BSM + Short-range interactions 0.54* 0.60* 0.59*

BSM + Contour-facilitation 0.52 0.59 0.66*

Difference, NSS – Baseline salience NSS

Baseline salience model (BSM) 0.00 0.00 0.00
BSM + Short-range interactions 0.09 0.09 0.16
BSM + Contour-facilitation 0.07 0.08 0.23

In the free-viewing task (fv), subjects passively observed images, while in the

contour following each image and were required to indicate whether that con

shows the normalized scanpath salience (NSS) metric described in Fig. 7 and

for brevity these values have been omitted here.) Numbers marked with * ind

baseline salience model. The bottom half shows the increment of each model�
with � indicate models for which this increment was significantly greater (pa

viewing task. The only model to significantly improve upon the baseline mode

was the contour-facilitation model during the Gabor array and Gabor snak
model (Table 3, bottom half): the relative improvement
due to the contour-facilitation model over the baseline

model was greater for the contour-detection task than

for the free-viewing task, significantly so for the Gabor

snake and Gabor array images. That is, the contour-fa-

cilitation model was better suited to the contour-detec-

tion task.

3.3. Eccentricity-dependent filtering

Including eccentricity-dependent filtering in the sal-

ience model produced a large improvement in the ability

to predict fixation locations. With the full implementa-
ent tasks(Fig. 2)

e Gabor snake Gabor array

cd fv cd fv cd

0.27 0.13 0.12 0.13 0.12
0.44* 0.14 0.13 0.12 0.13
0.49* 0.51* 0.54* 0.49* 0.55*

0.00 0.00 0.00 0.00 0.00
0.17 0.01 0.01 �0.01 0.01�

0.23 0.38 0.42� 0.36 0.44�

contour-detection task (cd), subjects were presented with a schematic

tour matched one that was present in the just-seen image. The top half

Table 2. (As in Table 2, all s.e.m. values were between 0.01 and 0.03, so

icate models whose NSS was significantly greater than the NSS of the

s NSS above the NSS of the baseline salience model. Numbers marked

ired t-test, p < 0.05) in the contour-detection task than in the the free-

l (*) and to perform significantly better in the contour-detection task (�)

e images.
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tion (in which internal feature maps were modulated

according to eccentricity and spatial frequency) the

average normalized scanpath salience values were: for

outdoor images, 1.02 (versus 0.69 for the baseline mod-

el); for fractal images, 1.07 (versus 0.44); for satellite

photos, 1.10 (versus 0.62). These represent ratios of
1.48, 2.43, and 1.77 for the three image classes, respec-

tively, relative to the baseline model performance. In

addition, the exponential approximation (in which only

the final salience map was modulated by an exponential

e�x decay with eccentricity x) produced results very sim-

ilar to the full implementation (Table 4). Indeed, the

normalized scanpath salience scores were 6% higher

for the exponential approximation than for the full
implementation. For comparison, we also implemented

a Gaussian approximation in which the final salience

map was modulated by an e�x2 decay with eccentricity,

using the same specifications as in the modified model

of Parkhurst et al. (2002). We found that although this

Gaussian approximation gave an improvement over

the baseline model, the improvement was 35% smaller

than with the exponential approximation (and 31%
smaller than with the full implementation).

Since the exponential approximation worked at least

as well as the full implementation, and required an order

of magnitude less CPU time for image processing, we

used only the exponential approximation in subsequent

analyses. These involved combining eccentricity-depen-

dent filtering with the short-range and long-range inter-

action models (BSM + SRI + EDF, BSM + CF + EDF
in Table 4). In general, we found that if there was a sig-

nificant improvement due to short-range or long-range

interactions over the baseline model in the absence of

eccentricity-dependent filtering, then this improvement

also persisted in the presence of eccentricity-dependent

filtering. This was true of all comparisons except for
Table 4

Results of comparing each model with the fixation locations recorded during

includes eccentricity-dependent filtering (EDF) in which salience values are

attenuation is proportional to e�x)

Outdoor Fr

NSS, mean ± s.e.m.

Random model + EDF �0.01 ± 0.01 �0
Baseline salience model (BSM) + EDF 1.19 ± 0.03 1
BSM + Short-range interactions (SRI) + EDF 1.25* ± 0.03 1.
BSM + Contour-facilitation (CF) + EDF 1.21* ± 0.03 1.
BSM + SRI + CF + EDF 1.24* ± 0.03 1.
Inter-observer + EDF 1.44* ± 0.04 1.

NSS, % of Inter-observer NSS

Random model + EDF �1% �
Baseline salience model (BSM) + EDF 83%
BSM + Short-range interactions (SRI) + EDF 87%
BSM + Contour-facilitation (CF) + EDF 84%
BSM + SRI + CF + EDF 86%
Inter-observer + EDF 100% 1

Numbers with a * indicate models whose fit was significantly better than th
the short-range interactions with Gabor snake and Ga-

bor array images; in that case, there was no significant

difference relative to the baseline model in either the ab-

sence or presence of eccentricity-dependent filtering,

although there was a non-significant downward trend

in the latter case. Thus it appears that the various mech-
anisms produce independent and separable effects on

observers� behavior.
4. Discussion

Our experiments were designed to explore the bot-

tom-up physiological mechanisms that influence human
behavior in an image-viewing task; we have disregarded

important top-down contributions from attentional

state, past experience, and other observer-specific fac-

tors, in order to assess how much can be attributed to

bottom-up, stimulus-driven influences alone. In this re-

spect, our method follows that of Parkhurst et al.

(2002), and our results with the baseline salience model

are in agreement with theirs: we found highly significant
correspondences between model predictions and human

fixation locations. However, the main focus of the pres-

ent study was to extend this method to test, via more

specific models, whether certain early vision mechanisms

play a significant role in determining subjects� fixation
locations.

We rely on an assumption of a substantial overlap be-

tween the biological mechanisms responsible for covert
attention shifts and overt eye movements; on this

‘‘pre-motor theory of attention’’ (Rizzolatti et al.,

1987), pure attention shifts during fixation are essential-

ly planned saccades whose motor execution is inhibited.

This is supported by behavioral evidence showing that,

despite motor inhibition, the spatial locus of attention
the free-viewing task, identical to Table 2, except that each model now

increasingly attenuated at larger eccentricities (for eccentricity x, the

actal Satellite Gabor snake Gabor array

.01 ± 0.01 0.02 ± 0.01 0.00 ± 0.01 �0.01 ± 0.02

.01 ± 0.03 1.12 ± 0.03 1.15 ± 0.03 1.08 ± 0.03
10* ± 0.03 1.20* ± 0.03 1.10 ± 0.03 1.03 ± 0.03
10* ± 0.03 1.23* ± 0.03 1.28* ± 0.03 1.22* ± 0.04
14* ± 0.03 1.25* ± 0.03 1.26* ± 0.03 1.20* ± 0.04
28* ± 0.04 1.24* ± 0.04 1.42* ± 0.06 1.17* ± 0.05

1% 1% 0% �1%
79% 90% 81% 92%
86% 96% 77% 88%
86% 99% 91% 104%
89% 101% 89% 103%
00% 100% 100% 100%

e corresponding baseline salience model (p < 0.05, paired t-test).
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exerts a small but detectable influence on the trajectories

of subsequent saccades (Kustov & Robinson, 1996; She-

liga et al., 1994, Sheliga, Riggio, & Rizzolatti, 1995) or

on the distribution of microsaccades during fixation

(Hafed & Clark, 2002). These results suggest that com-

putational models of attention and saccadic eye move-
ments should be similar until the execution stage,

where the dynamics would be expected to change due

to the motor inertia of eye movements or the differing

strengths of inhibition-of-return. Indeed, it is plausible

that other modes of behavioral output, such as verbal

report or finger-pointing, could be driven by the same

core mechanisms. In ongoing work, we are using such

approaches to further explore which computational ele-
ments are intrinsic to spatial attention, and which are

specific to particular output modalities (Astafiev et al.,

2003; Briand, Larrison, & Sereno, 2000).

We found that a large overall fraction of the observed

eye movement behavior could be attributed to the basic

elements of early vision (luminance, orientation, color),

according to the strong correspondence between the ob-

served fixation locations and the predictions of the base-
line salience model. Allowing that this general model of

vision is not intended to account for inter-observer dif-

ferences, an absolute upper limit on the performance

of such models is given by the ability to predict one sub-

jects� behavior from the average behavior of the remain-

ing subjects. The models we tested reached roughly 50%

of this theoretical limit (Table 2, lower half); perfor-

mance increased to 80–100% when eccentricity-depen-
dent effects were accounted for (Table 4, lower half);

as a crude measure, this suggests that the models could

account for at least half of the variance in spatial posi-

tions of fixated locations, outside of inter-observer

differences.

We tested three specific putative physiological mech-

anisms for their role in determining fixation locations.

The first such mechanism that we tested was short-range
inhibitory orientation interactions, also known as cross-

orientation suppression. These interactions were mod-

eled on the lateral inhibition that takes place within a

hypercolumn in early visual cortical areas, which in turn

is an abstraction of the concept that for a given receptive

field in visual space, there is a confined population of

cells in visual cortex that are tuned to all possible spatial

scales and orientations. Lateral inhibition is a ubiqui-
tous feature of sensory processing along spatial, tempo-

ral, and higher-order feature dimensions, as it

decorrelates the input and maximizes information densi-

ty (Simoncelli & Olshausen, 2001). Ultimately, this al-

lows behaviorally relevant input to be represented in a

more explicit and compact manner. Lee et al. (1999)

used psychophysical experiments to validate a hypercol-

umn model, showing that changes in attentional state
could be explained by changing the relative contribu-

tions of feedforward excitatory and feedback inhibitory
connections. These connections determine, among other

things, how easily an observer is able to identify a low-

contrast grating in the presence of an overlapping grat-

ing of a different orientation. When we included these

connections in our salience model, we found that the

model�s salience maps predicted observers� fixation loca-
tions significantly better. Thus, these connections, previ-

ously modeled with well-controlled minimalistic

laboratory stimuli, also appear behaviorally relevant un-

der less restrictive task conditions involving free-viewing

natural scenes.

The second mechanism that we tested was long-range

connections between different hypercolumns. Computa-

tionally, such connections or their equivalent have been
introduced to explain the subjective salience of implicit

contours like Gabor ‘‘snakes’’ that would otherwise be

invisible to purely local processing (Braun, 1999a; Li,

1998). Indeed, without long-range connections, the sal-

ience model performed very poorly in predicting observ-

ers� fixation locations in the Gabor arrays, since each

individual Gabor element appears equally salient to a

purely local mechanism. As we expected, the model per-
formance increased dramatically (more than threefold)

when the long-range connections were included. Howev-

er, somewhat unexpected was the fact that these connec-

tions lead to more modest improvements in predicting

fixation locations in the natural image categories. This

could be explained in one of two ways: either the model

was not accurately identifying what observers� consid-
ered to be ‘‘contours,’’ or the observers were giving rel-
atively little weight to the contours that were present. To

distinguish between these possibilities, we conducted a

second psychophysics experiment in which observers

viewed images under two different task conditions, one

requiring them to specifically attend to contours, and

one requiring only free viewing. If our model of contour

facilitation based on long-range connections was simply

inaccurate, then it should not have shown any addition-
al benefit in predicting observers� contour-detection

behavior over their free-viewing behavior. Instead, we

found that the improvement in model fit due to contour

facilitation was greater when subjects performed the

contour-detection task than when they performed the

free-viewing task. Thus one possible conclusion is that,

although our contour-facilitation model was accurately

highlighting what would qualitatively be identified as
‘‘contours,’’ observers� fixation locations were only

weakly influenced by the presence of elongated contours

in natural images where other salient image features

were also present.

The third biological vision mechanism that we tested

was the decay of sensitivity in peripheral relative to fove-

al vision. Anatomically, this decay is found throughout

the visual system, including the decreasing density of
photoreceptors and retinal ganglion cells away

from the fovea, and ‘‘cortical magnification’’—the
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over-representation in cortical surface area of central vi-

sion throughout visual cortex. This anatomical organi-

zation manifests itself behaviorally in increased

contrast detection and orientation discrimination

thresholds in the periphery, and in a non-uniform distri-

bution of saccade targets with a disproportionate ten-
dency toward the image center (Parkhurst et al., 2002).

We used published reports of contrast-detection and ori-

entation-discrimination thresholds (Virsu & Rovamo,

1979) to construct a detailed functional model of eccen-

tricity-dependent effects, and asked whether this model

could explain observers� non-uniform distribution of

saccade targets within the context of the salience model.

Indeed, we observed a strong increase in the model�s pre-
dictive ability when it included eccentricity-dependent

filtering, in agreement with Parkhurst et al. (2002). Fur-

thermore, we found that the behavior of the full eccen-

tricity-dependent model was matched by an

approximation in which a single exponentially-decaying

mask, centered at the current fixation location, is ap-

plied to the salience map. Such an exponentially-decay-

ing mask gave a better fit to behavior than did a
Gaussian-decaying mask as used in Parkhurst et al.

(2002). It should be noted that since our experiments

did not separately control covert attention shifts and

overt eye movements, we cannot distinguish between

mechanisms that might separately favor eye movements

near the center of attention and the center of fixation.

Along this line, future studies should explore how the

functionally-defined shape of ‘‘central vision’’ might
change with behavioral modalities such as covert atten-

tion, eye movements, finger-pointing, or verbal report.

In addition to building our understanding of biolog-

ical vision, we have aimed to develop computational

algorithms that are efficient enough to be useful in

real-world machine vision applications. The models of

short-range orientation interactions and eccentricity-de-

pendent filtering described here have efficient implemen-
tations that do not significantly impact the execution

time of the salience model, yet have significant effects

on the model�s ability to match human behavior. In con-

trast, the model of contour facilitation requires roughly

an order of magnitude more processing time and is

weakly relevant to behavior in some task conditions,

but is also critically important in predicting behavior un-

der other conditions such as the Gabor snakes that we
tested, and also potentially in real-world tasks like

road-finding in overhead imagery. Taken together, this

suggests that a machine vision implementation might

best compute an initial salience map based on local fea-

tures alone, and secondarily perform more computa-

tionally intensive tasks like contour facilitation or

object recognition within a restricted window selected

by the first stage. Such systems will ultimately be useful
both as stand-alone applications and as semi-automated

assistants in tasks that rely on a human executor. The
interface between biology and engineering is rich in re-

search directions that will lead us closer not only toward

understanding the inner workings of vision, but also to-

ward building machines that assist, interact, collaborate,

and synergize with real human visual systems.
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Appendix A

A.1. Contour-facilitation model

The weights in the connection matrix (shown in Fig.
6), following the model of Braun (1999a), are composed

of two factors: (1) an orientation-independent factor, q,
depending on the spatial positions (xa,ya) and (xb,yb) of

the receptive field centers of two units, and (2) an orien-

tation-dependent factor, w, depending on the units� pre-
ferred orientations, ha and hb, and on the orientation of

the line segment connecting the receptive field centers,

/ab. Four external parameters control this matrix: dmax,
kexc, kinh, and b. The orientation-independent factor is a
function of the Euclidean distance between the two

positions:

dab ¼
ððxa � xbÞ2 þ ðya � ybÞ

2Þ1=2

dmax

;

qab ¼ ðdab � expð1� dabÞÞ2.
The orientation-dependent factor relies on the follow-

ing definitions. For a given angle h, we define ~h such that

h ¼ ~hþ np with n being the integer for which 0 6 ~h < p.
Then the canonical difference d between two angles is

defined as

dðha; hbÞ ¼ p
2
� j~ha � ~hbj �

p
2

��� ���
or, equivalently:

dðha; hbÞ ¼
j~ha � ~hbj if j~ha � ~hbj < p=2;

p� j~ha � ~hbj otherwise.

(
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Three angles are significant; these are the two units�
preferred orientations ha and hb (as well as the average

aab = (ha + hb)/2), and the orientation of the line segment

connecting the units� receptive field centers:

/ab ¼ tan�1 yb � ya
xb � xa

� �
.

From these angles, the orientation-dependent factor

wab is given as

wab ¼
expð�b � dðaab;/abÞÞ
if units a and b are nearly collinear;

0 otherwise.

8><
>:

Two units are considered to be ‘‘nearly collinear’’ if

the following conditions all hold:

dðha; hbÞ < p=4

dðha;/abÞ < p=4

dðhb;/abÞ < p=4.

Thus, w will be large if the average of the two units� pre-
ferred orientations is similar to the orientation of the

line segment connecting the two units, which is precisely

the condition satisfied by a smooth contour.

Finally, the connection strength wab between units a
and b is given by a weighted sum of an excitatory part

and an inhibitory part:

wab ¼ wexc
ab þ winh

ab ;

with

wexc
ab ¼ kexc � qab � wab

winh
ab ¼ kinh � qab.

Note that the inhibitory nature of winh
ab is conferred by

choosing a negative value for kinh, so overall excitatory

or inhibitory connections are denoted by positive or
negative values of wab, respectively. The contour-facili-

tation algorithm can be pruned for CPU efficiency by

setting kinh = 0 when d(ha,hb) > p/4, so that wab ¼
wexc

ab ¼ winh
ab ¼ 0 under those conditions; this significantly

reduces the number of computations that must be per-

formed by the algorithm, at the price of a reduced ability

to reject orthogonal line segments as unlikely contours.

In order to allow algorithm parameters to be unit-less,
the connection strength matrix is normalized by the

maximum connection strength, so that after normaliza-

tion the new maximum connection strength is 1. Sample

wab matrices are illustrated in Fig. 5 (‘‘connection ker-

nel’’) and Fig. 6.

The iterative algorithm for contour-facilitation pro-

ceeds independently in three scale bands whose outputs

are summed at the end of the process. Each scale band
involves a network of several layers of units; some of

these layers are triply indexed by x and y spatial posi-

tions as well as orientation h, while others are doubly in-
dexed by the spatial positions only, and finally the

dynamic activity in several of the layers is tracked by a

time-step counter t:

Iðx; y; hÞ: input given by oriented filtering of the origi-

nal input image;

Ntðx; y; hÞ: activation levels from interactions among

units in I;

Gtðx; yÞ: group-inhibition weights depending on time

derivative of E;
Stðx; yÞ: leaky orientation-independent units driven by

N;

Etðx; yÞ: output energy given by sigmoidal transforma-

tion of S.

Note that in the following description, symbols of the

form k* are external free parameters of the model. The

immediate input to the contour-facilitation algorithm,

Iðx; y; hÞ (labeled as ‘‘filter output’’ in Fig. 5), is given
by applying the baseline salience model�s dyadic orienta-
tion-tuned pyramids (Itti et al., 1998) to the input image.

The ith entry in the activation matrix, Ntðxi; yi; hiÞ (la-
beled as ‘‘activationmaps’’ in Fig. 5), is given by the trans-

formation of the input I via the connection weights wab:

Ntðxi; yi; hiÞ ¼
X
j

wij � f ðNt�1ðxj; yj; hjÞÞ � gt�1
ij �Iðxi; yi; hiÞ �Iðxj; yj; hjÞ

$ %
;

where bÆc represents rectification, f ðNt�1ðxj; yj; hjÞÞ is a
fast plasticity term that amplifies outgoing connections

from units whose activity in the previous time step was

high (labeled as ‘‘recurrent excitation’’ in Fig. 5):

f ðNt�1ðxj; yj; hjÞÞ ¼
1 if kfast �Nt�1ðxj; yj; hjÞ < 1;

5 if kfast �Nt�1ðxj; yj; hjÞ > 5;

kfast �Nt�1ðxj; yj; hjÞ otherwise;

8><
>:

and gt�1
ij is a group-inhibition term that selectively mod-

ulates inhibitory connections (indicated by ‘‘modulation
of inhibition’’ in Fig. 5):

gt�1
ij ¼

1 if wij >¼ 0;

Gt�1ðxj; yjÞ otherwise.

(

Then Stðx; yÞ (indicated by the box containing a ‘‘R’’ in
Fig. 5) is given by

Stðxi; yiÞ ¼ St�1ðxi; yiÞ � kleak þ
X
h

Ntðxi; yi; hiÞ
$ %

and Etðx; yÞ (labeled as ‘‘output’’ in Fig. 5) is given by a

sigmoidal transformation of Stðx; yÞ:

Etðx; yÞ ¼ 1þ exp 2� 4 �S
tðx; yÞ

ksigthresh

� �� ��1

.

Finally, the group-inhibition weights are updated based

on a lowpass-filtered version of the change in output

energy between time steps t � 1 and t:
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Dtðx; yÞ ¼ lowpassðEtðx; yÞ � Et�1ðx; yÞÞ;
Gtðx; yÞ ¼ Gt�1ðx; yÞ þ kgadd � bDtx; y � kgtopc

� kgsub � bkbottom � Dtx; yc;

with initial group-inhibition values at time t = 0 of

G0ðx; yÞ ¼ 1. So, local inhibitory strength increases if

the output energy is increasing at a rate faster than kgtop,

and decreases if the output energy is increasing at a rate

slower than kbottom.
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